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Similarities in the low-energy configurations of 
dislocations and vortices 
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Department of Mechanical Engineering, University of Maryland, College Park, 
MD 20742, USA 

It is shown that vortices and dislocations can be treated as virtually identical from both a 
physical and mathematical perspective. This allows the lowest-energy configurations of such 
defects to be predicted. In particular, it is suggested that, similar to the way in which a 
dislocation cell structure forms at high deformations, an analogous vortex cell structure is 
generated at high fluid velocities. In addition, both arrangements are believed to underlie the 
concept of turbulence. 

1. Int roduct ion 
An extraordinarily close relationship has been shown 
to exist between the deformation of solids and the flow 
of fluids [1, 2]. Some of these similarities that are 
relevant to the present study are listed in Table I. 
More generally, elastic deformation may be likened to 
irrotational flow, while plastic deformation can be 
equated to rotational flow. Whereas dislocations 
underlie the basis of plasticity, vortices represent the 
fundamental unit of rotational flow. Dislocations and 
vortices fall under the category of line defects and have 
a common mathematical and physical basis. This 
commonality will be exploited in the present study to 
predict the most likely arrangements of these defects 
for various deformations and flows. 

2. Individual d i s l o c a t i o n s  and v o r t i c e s  
The radial lines in Fig. la correspond to equipoten- 
rials associated with an isolated vortex, whereas the 
circles represent the direction of flow induced by these 
potentials [3, 4]. When a uniform momentum field, P, 
given by 

Pi = PVi (1) 

is superimposed on the isolated vortex field, the con- 
figuration in Fig. lb obtains. The quantity v~ in Equa- 
tion 1 denotes the velocity vector, whereas p denotes 
the fluid density, which will be assumed to be constant 
(i.e. incompressible flow). The astonishing feature of 
Fig. lb is its close resemblance to that of an edge-type 
dislocation. In the present case, however, the crystallo- 
graphic planes are replaced by equipotential lines. The 
flow is at right angles to these lines from left to right. 
How could this important similarity have been over- 
looked for so long? One possible reason is the habit of 
including only the streamlines in the construction of 
most flow patterns [3, 4]. 

The vortex in Fig. lb has induced extra equipoten- 
tial lines into the momentum field, similar to the way 
in which the edge dislocation in Fig. 2a has introduced 
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an extra half-plane into the originally perfect crystal 
lattice. The similarity is made more striking by redra- 
wing Fig. lb as shown in Fig. 2b, wherein the stream- 
lines have been omitted. 

Suppose now that a clockwise Burgers circuit is 
taken about the quantized lattice dislocation (solid 
symbol) in Fig. 2a, as shown by the arrows. The 
closure failure of this circuit is denoted by the dotted 
arrow and is precisely the Burgers vector, b, of the 
enclosed dislocation. More precisely, it may be written 
as [1]  

bi = Au~ = ~dui = ~Sjuidxj = ~j ldx;  
(2) 

where [3ii is the distortion given by 

J3~ = ~jui (3) 

while u~ is the plastic displacement. In particular, Au~ 
represents the total plastic displacement associated 
with the dislocation, which is equivalent to the width 
of the extra half-plane in Fig. 2a. When the b o d y  
containing the dislocation is taken to be finite, as is the 
case in Fig. 2a, then it is necessary that an array of 
surface dislocations (dotted symbols) be distributed 
upon it in order to satisfy the stress-free boundary 
conditions [5]. Unlike the lattice dislocation, the sur- 
face dislocations are of infinitesmal strength and con- 
tinuously distributed, reflecting the resultant change 
in the surface profile. Furthermore, the law of the 
conservation of Burgers vectors must be obeyed; 
namely [6] 

b E + b s = 0 (4) 

which states that the sum of the Burgers vectors of the 
lattice dislocation and its corresponding surface dis- 
locations must add up to zero. Conversely, the sum of 
all the surface dislocations must be equal in strength 
but opposite in sign to that of the lattice dislocation. 

Similar to the case of a dislocation, a clockwise 
Burgers circuit may be drawn about the quantized 
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T A B L E I Correspondence between fluid flow and deformation of 
solids 

Fluids Solids 

Irrotational flow 
Rotational flow 
Vortices 
Momentum, P~ 
Potential, d o 
Velocity, v i 
Circulation, F 
Vorticity, w~ 
Density, 9 
Kinetic energy 
Conservation law for 
circulation 
Vortex boundary 
Vortex boundary energy, Evu 
Flow-free boundary conditions 

Irrotational flow along curved 
channel 
Rotational flow along curved 
channel 
Retarded flow 
Enhanced flow 
Fluid turbulence associated 
with formation of vortex cells 

Elastic deformation 
Plastic deformation 
Dislocations 
Stress, oij 
Displacement, u~ 
Distortion, 13 u 
Burgers vector, bl 
Dislocation density, ~u 
Elastic constant, G 
Strain energy 
Conservation law for Burgers 
vector 
Grain boundary 
Grain boundary energy, EbB 
Traction-free boundary 
considerations 

Elastic bending 

Plastic bending 
Tension 
Compression 
Solid turbulence associated 
with formation of dislocation 
cells 

# 
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Figure 1 Vortex in the (a) absence, (b) presence of an applied 
momentum field, P. 

vortex (solid symbol) in Fig. 2b. The closure failure is 
depicted by the dotted arrow and corresponds to the 
circulation, F, of the enclosed vortex. Mathematically, 
it can be expressed as [1] 

F = A~ = ~ d ~  = ~c~iqbdx~ = ~vidxi  

(5) 

F 

P 
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Figure 2 Similarity between (a) dislocation and (b) vortex. 

P 

where 

vi = c~iep (6) 

The quantity Ad~ is simply the number of extra poten- 
tial lines about the Burgers circuit. Unlike b~, which is 
a vector, F is a scalar. The striking correspondences 
between the various quantities in Equations 2 and 5 
can be seen more clearly by reference to Table I. When 
the fluid body in Fig. 2b is taken as finite, it is required 
that its surfaces be covered with a certain distribution 
of surface vortices (dotted symbols), similar to the case 
for a dislocation. Likewise, the following conservation 
law for circulation must hold [1]: 

F L + F s = 0 (7) 

where F L is the circulation of the quantized vortex, 
whereas F s includes that from all of the continuously 
distributed surface vortices. 

3. The close analogy between 
t i l t - type  boundaries in liquids 
and solids 

As the lattice dislocation in Fig. 2a moves toward the 
rightmost surface, it attracts the surface dislocations 
toward it, as illustrated in Fig. 3a. Once surface con- 
tact is achieved, the quantized lattice dislocation be- 
gins to annihilate some of the surface dislocations, in 
turn forming a small step, as can be observed in Fig. 
3b. Finally, when annihilation is complete, a surface 
step of length b, the Burgers vector of the quantized 
dislocation, is created. This can be seen by reference to 
Fig. 3c. 
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Figure 3 Sequence of events in the annihilation of(a c) a quantized 
dislocation and (d f) a vortex, as it meets a free surface. 

In a similar manner, as the quantized vortex in Fig. 
2b nears the rightmost surface, it attracts surface 
vortices to  it in the manner of Fig. 3d. As a result, the 
potential line profile is distorted in the vicinity of the 
vortices. On contacting the surface, the quantized 
vortex begins to annihilate the surface vortices, in turn 
creating a small step in the equipotential line, as 
shown in Fig. 3e. Complete annihilation can be seen in 
Fig. 3f where the circulation associated with the 
quantized vortex just cancels those of all the surface 
vortices. As a result, a step of width F is formed in an 
otherwise uniform equipotential pattern. 

Consider next the uniform array of ledges in Fig. 4a 
of the type already discussed in connection with Fig. 
3c. If the ledges are next elastically flattened to pro- 
duce a planar surface, the configuration shown in Fig. 
4b obtains. The surface is seen to consist of an array of 
localized lattice dislocations connected by a continu- 
ous array of surface dislocations, all obeying Equation 
4. When the configuration in Fig. 4b is joined to its 
mirror image, the symmetric tilt-type grain boundary 
of Fig. 5 obtains. This model has been argued to be the 
correct alternative [7, 8] to the classical one first 
proposed by Burgers [9]. The grains, or cells, ad- 
joining the grain boundary are rotated by an angle, 
2f2, relative to one another. From the geometry of Fig. 
4b and Fig. 5, this angle can be written as 

2f2 = 2 t a n - l ( b h )  (8) 
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Figure 4 Dislocation configuration in (b) obtained after stepped 
surface in (a) is flattened by elastic displacements. 
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Figure 5 Dislocation tilt boundary within a solid. 

where h is the spacing between lattice dislocations. 
For small misorientations, this reduces to [10] 

b 
n ~- - (9) 

h 

The vortex counterpart of the stepped surface in 
Fig. 4a is shown in Fig. 6a and consists of a uniform 
array of ledges in potential space of the type illustrated 
in Fig. 3f. When this vortex configuration is re- 
arranged along the lines used to generate the dis- 
location array in Fig. 4b, the arrangement shown in 
Fig. 6b is the result. In a similar fashion, it is seen to 
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Figure 6 Fluid counterparts of the dislocated solids in Fig. 4. 

consist of a uniform array of quantized vortices con- 
nected by a continuous distribution of surface vorti- 
ces. It is clear from this configuration that the velocity 
profile across the rightmost surface is no longer uni- 
form, as was the case in Fig. 6a. 

When a cell of the type given by Fig. 6b is joined to 
its mirror image, the configuration shown in Fig. 7 is 
obtained. It can be seen from this drawing that the 
velocity is uniform everywhere except in the vicinity of 
the boundary, where a sharp change in direction and 
velocity occurs. From the geometry of Fig. 6b and 
Fig. 7, the change in direction of flow across the vortex 
boundary may be written as 

2 ~  = 2 t a n  l ( h  ) ( 1 0 )  

where r is the step length associated with a quantized 
vortex, which can be related to its circulation by [ l ]  

F 
r = - ( 2 1 )  

V 

where v is the fluid velocity at the step. Combining 
Equations 10 and 2 2 yields 

which is the fluid analogue of Equation 8 for dis- 
locations. For small angles, Equation 12 becomes 

F 
n _~ - -  ( 2 3 )  

vh 

From Equation 12, it follows that the velocity at the 
step must be chosen to match that of the uniform 
velocity stream within the cells. Under this condition, 
fluid will be directed uniformly from one cell to the 
other. 

The mathematical conditions that must be satisfied 
in order for the surface in Fig. 3a to be traction-free is 

Figure 7 Vortex tilt boundary within a liquid. 

as follows: 

fyijni = 0 (14) 

where cy u is the stress field within the solid, while nj is 
the normal to the surface, In a similar manner, the 
condition that the velocity component normal to the 
liquid surface in Fig. 3d vanish is given by 

Pini = 0 (15) 

Clearly, Equations 14 and 15 are not satisfied in Figs 
4b and 6b, respectively, which in turn allows tractions 
and flow to be transmitted across the boundaries in 
Figs 5 and 7, respectively. On the other hand, the 
conservation laws for Burgers vectors and circulations 
embodied in Equations 4 a n d  7, respectively, must 
always be obeyed. 

The boundary in Fig. 5 is essentially dipolar in 
nature so that the dislocations screen one another's 
stress fields. The screening distance is of the order of 
the dislocation spacing or hi2. The energy per unit 
length of the boundary can thus be written in terms of 
the self-energy of a single dislocation wherein the 
screening distance is used for the cut-off distance, 
giving [1] 

Gb2 In ( 2 ~o )  (16) 
Et'B - 2nh 

In the case of fluids, the velocity fields associated 
with the vortex wall in Fig. 7 are screened due to their 
dipole nature. As for dislocations, the energy per unit 
length of such walls can be written in terms of the self- 
energy of an individual vortex as follows: 

EvB - -  4n 

where, once again, h/2 is used for the cut-offlength [1]. 
The similarity of this relation with Equation 16 is 
obvious. 
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4. Comparison between bending and 
f low along a curved channel 

It has been shown 1-11] that the elastic bending of a 
beam can be described in terms of a unique distribu- 
tion of surface dislocations, as illustrated in Fig. 8a. 
The displacement of the nearly vertical lattice planes 
show that the fibres above the neutral axis are in 
tension, while those below are under compression. 

As can be seen in Fig. 8b, the case of irrotational 
fluid flow along a curved channel can be represented 
in terms of a distinct array of surface vortices and is 
remarkably similar to that for the bent beam. In this 
case, the array of vortices on the topmost surface 
retards the flow from the external field P. Those on the 
bottommost  surface, however, enhance the flow rate. 
This is clear from the spacing of the nearly vertical 
equipotential lines, which now take the place of lattice 
planes in the bent beam. Carrying the analogy still 
further, an increased flow rate corresponds to com- 
pression, while retarded flow corresponds to tension. 
The surface dislocations and vortices in Figs 8a and b, 
respectively, are seen to obey the conservation laws of 
Equations 4 and 7, respectively. 

As the bending in Fig. 8a is increased, the stresses 
within the beam become sufficiently high to generate 
and propagate lattice dislocations. These are shown in 
Fig. 9a and are seen to consist of a continuous dis- 
tribution of tilt boundaries [11] of the type already 
discussed in connection with Fig. 5. It is this arrange- 
ment that leads to the greatest reduction in elastic 
strain energy within the beam. 

In a similar manner, as the momentum field along 
the curved channel is increased, vortex nucleation and 
multiplication within the fluid is enhanced, leading to 
the rotational flow shown in Fig. 9b. It is seen to 
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Figure 8 (a) Elastic bending of a beam, (b) irrotational flow along a 
curved channel. 
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Figure 9 (a) Plastic bending of a beam, (b) rotational flow along a 
curved channel. 

consist of a continuous distribution of vortex walls of 
the type illustrated in Fig. 7. This arrangement is quite 
stable and leads to a significant reduction in the 
kinetic energy of the fluid. 

5. Correspondence between large 
deformations and high-velocity 
f lows 

As early as 1913, Darwin [12, 13] concluded from his 
X-ray studies that crystals were subdivided into mo- 
saic blocks. Later electron microscopy studies showed 
that these blocks were in fact cells delineated by 
dislocation walls [14]. A model for these walls was 
subsequently developed in terms of classical grain 
boundaries [15] and later modified to include surface 
dislocations [16]. The final result is shown in Fig. 10a. 
Such a structure develops with increasing degrees of 
plastic deformation. It is seen to consist of boundaries 
of the type discussed earlier in connection with Fig. 5. 
The solid lines correspond to slip planes over which 
the lattice dislocations have passed on their way to the 
cell walls. Because of space limitations, the surface 
dislocations within the boundaries are indicated by a 
single dot. It is the dipole nature of such walls that give 
them the lowest energy of any possible dislocation 
arrangement, in accordance with Equation 16. 

As in the case of dislocations, the vortices are not 
expected to be arranged randomly but rather take the 
form illustrated in Fig. 10b. Again, the solid-line seg- 
ments represent the planes over which the quantized 
vortex lines have moved on their way to the cell walls. 
The vortex walls are of the type previously discussed 
in connection with Fig. 7. Because of space limitations, 
the surface vortices in Fig. 10b are denoted by single 
dots. Here again, it is the dipole nature of such walls 
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Figure 10 Generation of (a) dislocation, (b) vortex cell structure 
within .a solid and liquid, respectively, in response to the applied 
stress and m o m e n t u m  fields, respectively. 

that gives them their low energy, in accordance with 
Equation 17. 

Perhaps the single most distinguishing feature of 
Fig. 10a is that an originally perfectly periodic ar- 

rangement of crystalline planes has been broken up 
into a chaotic jumble of misaligned cells at sufficiently 
high plastic strains. For flow to continue, both the slip 
plane and direction must change discontinuously from 
one cell to its neighbour. This type of deformation 
may be labelled as turbulent, in contrast to the more 
laminar flow that occurs on a single slip system within 
a perfect crystal. 

Similarly, the characteristic aspect of Fig. 10b is the 
break-up of an originally "crystallographic" alignment 
of equipotential lines into a chaotic maze of mis- 
oriented cells after the attainment of some critical 
velocity or Reynolds number [-17]. The direction of 
flow is forced to change repeatedly from one cell to 
another, similar to that which was encountered in 
solids, and thus may be termed turbulent. At low 
velocities the flow takes place along a single direction 
and is designated as laminar. 

6. S u m m a r y  and c o n c l u s i o n s  
Once it is realized that uniform fluid flow can be 
represented in terms of equally spaced planes of con- 
stant potential, much like those that comprise a crys- 
tal lattice, the connection between vortices and dis- 
locations is immediate. In particular, the superposi- 
tion of a vortex on to this uniform flow gives rise to 
extra equipotential half-planes analogous to the extra 
half-planes associated with an edge-type dislocation 
within a crystal. Upon recognition of this correspond- 
ence, the physics and mathematics for both types of 
line defect are seen to be identical. It then becomes 
possible to formulate models of the most likely arran- 
gements of such defects, based on lowest-energy con- 
siderations. More specifically, it is suggested that sim- 
ilar to the way in which dislocations align themselves 
into cell walls at large deformations, vortices do the 
same at high flow rates. It is concluded therefrom that 
such arrangements form the common basis of turbu- 
lence in both liquids and solids. 
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